25 research outputs found

    Simulation study for investment decisions on the EcoBoost camshaft machining line

    Get PDF
    Design/redesign of manufacturing systems is a complex, risky, and expensive task. Ford Motor Company’s Valencia Engine Plant faces this challenge as it plans to upgrade its machining and assembly lines to introduce the new EcoBoost engines. The research project described in this paper aimed to support the transition process particularly at the camshaft machining line by using simulation modelling techniques. A series of experiments was carried out using the simulation model developed, and recommendations were proposed based on the results of these experiments to support the decision as to where to invest on the line. The outcomes from the research project indicated that investment is required in terms of increasing the capacity of two bottleneck operations through retooling and improving the conveyor routing logic in one key area. Keywords: simulation modelling, closed-loop network, automotive production system

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bena, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Godoy Bürki, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentin

    A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia

    Get PDF
    Children’s ability to reflect upon and manipulate the sounds in words (’phonological awareness’) develops as part of natural language acquisition, supports reading acquisition, and develops further as reading and spelling are learned. Children with developmental dyslexia typically have impairments in phonological awareness. Many developmental factors contribute to individual differences in phonological development. One important source of individual differences may be the child’s sensory/neural processing of the speech signal from an amplitude modulation (~ energy or intensity variation) perspective, which may affect the quality of the sensory/neural representations (’phonological representations’) that support phonological awareness. During speech encoding, brain electrical rhythms (oscillations, rhythmic variations in neural excitability) re-calibrate their temporal activity to be in time with rhythmic energy variations in the speech signal. The accuracy of this neural alignment or ’entrainment’ process is related to speech intelligibility. Recent neural studies demonstrate atypical oscillatory function at slower rates in children with developmental dyslexia. Potential relations with the development of phonological awareness by children with dyslexia are discussed.Medical Research Council, G0400574 and G090237

    In vitro induction and proliferation of protocorm-like bodies (PLBs) from leaf segments of Phalaenopsis bellina (Rchb.f.) Christenson

    Get PDF
    An in vitro culture procedure was established to induce protocorm-like bodies (PLBs) from leaf segments of the Phalaenopsis bellina (Rchb.f.) Christenson directly from epidermal cells without intervening callus on ½ strength modified Murashige and Skoog (MS) (in Physiol Plant 15:473–497, 1962) medium supplemented with 1-Naphthaleneacetic acid (NAA; 0, 0.1, 1 mg/l) and Thidiazuron (TDZ; 0, 0.1, 1, 3 mg/l). The best response was established at 3 mg/l TDZ which induced 78% of leaf segments to form a mean number of 14 PLBs per explant after 16 weeks of culture. No PLBs were found when leaf segments were cultured on ½ strength modified MS media supplemented with 0.1 and 1 mg/l NAA. The best induction percentage for auxin: cytokinin combination was at the combination of NAA and TDZ at 1.0 and 3.0 mg/l which gave 72% induction with 9 PLBs per explant. Semi-solid ½ strength MS and liquid Vacin and Went (VW) (in Bot Gaz 110:605–613, 1949) medium were used in order to find the highest survival and number of PLBs proliferation after 3 months in culture. Half strength MS showed an average of 9 PLBs in comparison with VW with an average of 5.3 PLBs per explants. Histological observations revealed that the regenerated PLBs were generally formed from the epidermal layers of the posterior regions of the leaf segments. Scanning electron micrograph of PLBs showed the origin of newly formed PLB from the peripheral region of leaf segments

    Physiological parameters for Prognosis in Abdominal Sepsis (PIPAS) Study : a WSES observational study

    Get PDF
    BackgroundTiming and adequacy of peritoneal source control are the most important pillars in the management of patients with acute peritonitis. Therefore, early prognostic evaluation of acute peritonitis is paramount to assess the severity and establish a prompt and appropriate treatment. The objectives of this study were to identify clinical and laboratory predictors for in-hospital mortality in patients with acute peritonitis and to develop a warning score system, based on easily recognizable and assessable variables, globally accepted.MethodsThis worldwide multicentre observational study included 153 surgical departments across 56 countries over a 4-month study period between February 1, 2018, and May 31, 2018.ResultsA total of 3137 patients were included, with 1815 (57.9%) men and 1322 (42.1%) women, with a median age of 47years (interquartile range [IQR] 28-66). The overall in-hospital mortality rate was 8.9%, with a median length of stay of 6days (IQR 4-10). Using multivariable logistic regression, independent variables associated with in-hospital mortality were identified: age > 80years, malignancy, severe cardiovascular disease, severe chronic kidney disease, respiratory rate >= 22 breaths/min, systolic blood pressure 4mmol/l. These variables were used to create the PIPAS Severity Score, a bedside early warning score for patients with acute peritonitis. The overall mortality was 2.9% for patients who had scores of 0-1, 22.7% for those who had scores of 2-3, 46.8% for those who had scores of 4-5, and 86.7% for those who have scores of 7-8.ConclusionsThe simple PIPAS Severity Score can be used on a global level and can help clinicians to identify patients at high risk for treatment failure and mortality.Peer reviewe

    Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon

    Get PDF
    Bioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO2, N2O and CH4 during crop production may reduce or completely counterbalance CO2 savings of the substituted fossil fuels. These greenhouse gases (GHGs) need to be included into the carbon footprint calculation of different bioenergy crops under a range of soil conditions and management practices. This review compiles existing knowledge on agronomic and environmental constraints and GHG balances of the major European bioenergy crops, although it focuses on dedicated perennial crops such as Miscanthus and short rotation coppice species. Such second-generation crops account for only 3% of the current European bioenergy production, but field data suggest they emit 40% to >99% less N2O than conventional annual crops. This is a result of lower fertilizer requirements as well as a higher N-use efficiency, due to effective N-recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha−1 yr−1 for poplar and willow and 0.66 Mg soil C ha−1 yr−1 for Miscanthus). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land-use changes with potential high C losses when native vegetation is converted to annual crops. Although dedicated perennial energy crops have a high potential to improve the GHG balance of bioenergy production, several agronomic and economic constraints still have to be overcome
    corecore